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Abstract

This paper deals with an inverse problem, which consists of the experimental identification of line heat sources in a

homogeneous solid in transient heat conduction. The location and strength of the line heat sources are both unknown.

For a single source we examine the case of a source which moves in the system during the experiment. The identification

procedure is based on a boundary integral formulation using transient fundamental solutions. The discretized problem

is non-linear if the location of the line heat sources is unknown. In order to solve the problem we use an iterative

procedure to minimize a cost function comparing the modelled heat source term and the measurements. The proposed

numerical approach is applied to experimental 2D examples using measurements provided by an infrared scanner for

surface temperatures and heat fluxes. In some particular examples, internal thermocouples can be used. A time regu-

larization procedure associated to future time-steps is used to correctly solve the ill-posed problem. � 2002 Elsevier

Science Ltd. All rights reserved.

1. Introduction

In the last few years, the inverse heat conduction

problem (IHCP) has been the subject of a lot of works in

various fields of research. Domains such as unknown

boundary conditions reconstruction or parameters

identification have been widely investigated. Paradoxi-

cally, the bibliography on the heat source term identifi-

cation in the fundamentals equation of the heat transfers

is quite small. This problem has nevertheless some in-

teresting applications in various branches of engineering

and science. For example, the knowledge of the heat

generated by buried nuclear or chemical waste is essen-

tial to prevent environmental disaster. In this case, since

the internal measurements are difficult or even danger-

ous, it is interesting to develop a method using only

surface measurements to reconstruct the heat source

term. Other applications of such a method can be in-

teresting in the domain of non-destructive control, for

example the control of pre-stressed concrete bridge

structure damaged by steel corrosion. The steel rods,

heated by Joule effect can be assimilated to point heat

sources in a 2D section. By filming the bridge with an

infrared scanner, we obtain the superficial temperature

and heat flux field on the bridge boundaries. The aim is

to identify the heat dissipated by Joule effect in the steel

rods and their location using superficial measurements

only in order to estimate their corrosion level.

In the present work, we propose the boundary ele-

ment method (BEM) for the heat source term identifi-

cation considered here as a discontinuous set of point

heat sources at unknown location and unknown

strength. Different authors working on point heat source

identification propose methods such as adjoint method

[1] or finite element method (FEM) [2]. In these two

cases, the location of the point heat sources must be

known to solve the inverse problem of strength identi-

fication. Recently Abou Khachfe [3] proposes the FEM

associated to conjugate gradient algorithm to cope with

the location and strength identification of multiple point

heat sources. This method has been tested on a 2D ex-

periment and gives good results for the identification of
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two static sources. In [4], we have proposed the BEM to

identify both the location and the strength of point heat

sources in the steady case. This method tested on a 2D

experiment gives good results for the simultaneous es-

timation of four sources.

In a previous work we have presented the results of a

transient experiment for point heat source estimation in

2D. This method proposed in [5] is available only in the

case of a single source. The location estimation proce-

dure, based on an iterative partitioning of the domain; it

does not use directly the BEM for location estimation

but the estimated strength of two artificial sources

placed in two parts of the domain. The part of the do-

main which contains the source with the lower strength

is eliminated at the next iteration. At the end of the

process we have an estimation of the source location.

This approach is available only in the case of a single

static source but can be used with any method which

permits a strength estimation of two sources when their

location is known.

In a recent work [6], we have proposed a numerical

method to identify the location and the strength of

multiple static heat sources in transient heat conduction.

This method can cope also with the identification of a

moving source in 2D or 3D domains. Compared to the

location estimation procedure proposed in [5], the ap-

proach uses the BEM to build the cost function for the

location estimation procedure. This approach compar-

ing the modelled heat source term and the measurements

allows various configurations such as multiple static

sources or moving sources.

BEM is well adapted to point heat source treatment

because it does not require any refined mesh around the

point heat source as in FEM. Indeed, for BEM taking

into account different locations for a point heat source

leads to a log function calculation of the co-ordinates in

steady case and incomplete gamma function calculation

of the co-ordinates in transient case.

In the present work we propose to test our approach

on 2D experiments for the case of multiple static heat

sources and for the case of a moving heat source. 3D

applications are difficult to perform due to experimental

problems to produce a point source with a significant

strength. In our 2D applications the boundary mea-

surements are given by an infrared scanner, which per-

mits in most cases to avoid internal measurements.

Compared to the experiment presented in [5], which

concerned a single source, we propose here the estima-

Nomenclature

A linear system matrix

B second member vector

d distance from the line heat source (mm)

g heat source

g algebraic line heat source strength

G;H matrices for transient BEM

h heat transfer coefficient

I matrix for point source treatment

K number of point sources

L square bar length

N boundary element number

N 0 internal points number

P heat flux vector

Q time regularization matrix

T temperature vector

R number of future time-steps

S source strengths vector

t time

U vector of the unknowns

W transient BEM vector

x; y Cartesian co-ordinates

X co-ordinates vector

Greek symbols

D algebraic error

C boundary of the diffusive domain

X diffusive domain

a thermal diffusivity

k thermal conductivity

e emissivity

u measured heat flux (W m2)

h temperature in Celsius (�C)
r standard deviation

H vector for the location identification

g time regularization coefficient

Subscripts

1 ambient conditions

Superscripts

^ least squares solution

� approximated heat source contribution
0 internal points

Abbreviations

BEM boundary element method

FEM finite element method

c.c. curvilinear co-ordinates

tc thermocouple

Nu Nusselt number

Pr Prandtl number

Gr Grashoff number
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tion of five heat sources activated at the same time using

boundary measurements only. An experimental result

for location estimation of a moving heat source is also

presented.

This paper is divided in three parts. The first one

describes in detail the experimental process. Two dif-

ferent experiments have been set up, one for the multiple

static heat sources case and the other for the case of a

single moving heat source. The second part describes

briefly the method used to identify the location and the

strength of the point heat sources. All the details con-

cerning this method can be found in [6]. The third part is

devoted to the experimental results.

2. 2D experiments using infrared thermographic data and

internal temperatures

In order to test the identification method proposed in

[6], two experiments have been set up. The experimental

designs are two long square bars, one for the multiple

static heat sources case and the other for the case of a

single moving heat source. The proposed experimental

setup is very similar to the one proposed in [4]. The

chosen material is cement which leads to a good resis-

tance to fracture at the temperature reached in our ex-

periment.

In the presented examples, different kinds of mea-

surements can be used, it can be an extra boundary

condition or the temperature given by some thermo-

couples. When it is possible the boundaries are scanned

using an infrared scanner and the surface temperature

field is measured. The surface heat flux associated to the

measurements is used as an extra boundary condition.

The heat flux is obtained associating the measured

temperature field to a calculated non-linear heat transfer

coefficient. Such restrictive boundary conditions are not

essential to solve the inverse problem and some other

boundary conditions can be applied on the boundaries.

We present an example with a part of the boundary

imperfectly insulated.

2.1. The experimental design

The experimental designs under investigation are two

long square section bars of cement crossed in their

longest dimension by KANTHAL� heating wires of 0.3

mm diameter. In the central section of a bar, the diffu-

sion system is assumed bi-dimensional. Considering the

heating wires diameter (0.3 mm) compared to the section

of a bar (50� 50 mm2), the heat generation can be ap-

proximated by a point in a section. The KANTHAL�

wires are heated by Joule effect. The current is imposed

by some independent power supplies, which are driven

by a computer in order to control the strength varia-

tions. If we call L the length of the heating wire, the

imposed strength of the source is: gðtÞ ¼ currentðtÞ �
voltageðtÞ=L.
The bar is fixed vertically on an optical bench (cf.

Fig. 1). The surface temperature is measured using the

Fig. 1. The experimental setup scheme.
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infrared scanner, an AGEMA� 880 LW, which is placed

on the same bench. The infrared pictures constituted of

270� 270 pixels (picture elements) are hard disc re-
corded. The infrared scanner is calibrated at the labo-

ratory using the procedures described in [7]. In the

obtained infrared picture used as a data-file it is neces-

sary to extract 40 values, which represents 10 boundary

elements on each side of the bar. To obtain this infor-

mation from the picture we use a quadratic interpolation

over the concerned pixels and the average temperature is

then calculated at the middle of the element. Compared

to the steady experiments presented in [4], we have to use

two aluminium mirrors in order to have the four sides

on the same picture. In the steady case, we could scan

the four faces one by one using a 7� lens, here we use a
20� lens. As a result the number of pixels for each face is
quite low (40 compared to 200 in the steady case). All

the surfaces are painted in black. The black paint

emissivity e is 0.95 in the wavelength range of the

scanner: 8–12 lm.
Two different bars are used to test both the multiple

static heat sources case and the moving heat source case.

Their sections are displayed in Figs. 2 and 3. In the first

domain, we can activate five different heating wires, four

of them are located in the corners, the fifth one is located

in the middle of the section. In the second section we

find 16 heating wires located on a circle of centre g0 and
diameter 30 mm. The distance between two heating

wires is constant and equal to 5.85 mm. The heating

wires are activated successively in order to simulate a

moving heat source.

In the section under investigation two sensors (tc1
and tc2 ) can be found at 10 mm from a heating wire g0
placed in the middle of the section (cf. Figs. 2 and 3).

They are used to identify the thermal properties of the

material using a method similar to the two linear probe

method proposed in [8]. The thermal conductivity of

the cement used for these experiments is k ¼ 0:96
W m�1 K�1. The thermal diffusivity is equal to

a ¼ 5:3� 10�7 m2 s�1.

2.2. The experimental inverse problem

In this paragraph we present the boundary condi-

tions associated to the measurements used to solve the

inverse problem. The 2D section under investigation is

discretized in 40 BEM linear elements. The inverse

problem consists in identifying each activated heat

source location and the associated strength. To cope

with this problem we use different boundary conditions,

either C1 and C2 are scanned or C1 is scanned and C2 is
imperfectly insulated.

2.2.1. All the sides are scanned

In this case the temperature and the heat flux is

known for each boundary element. The heat flux den-

sities over the scanned surfaces are obtained as the sum

of radiant and convective losses. For the radiant heat

flux we have ur ¼ erðh4r � h4i Þ with hr the radiant ambi-
ent temperature in Kelvin and hi the measured temper-

ature at element Ci of the scanned boundary. For the

convective heat transfer coefficient hc, we use the rela-
tion proposed by Elenbaas [9] for a short vertical cyl-

inder in calm air. In the case of a cylinder of length L

and diameter D we have:

NuD exp
�2
NuD

� �
¼ 0:6 Gr:Pr:

D
L

� �1=4
D

ð1Þ

This correlation is used considering an average tem-

perature along the studied section and for the diameter

D equal to 50 mm. In Fig. 4, we present the heat transfer
Fig. 2. The experimental section for the multiple static heat

sources case.

Fig. 3. The experimental section for the moving heat source.

1954 F. Lef�eevre, C. Le Niliot / International Journal of Heat and Mass Transfer 45 (2002) 1951–1964



coefficient evolution and the mean temperature evolu-

tion on the scanned surface versus time obtained for a

constant strength of 100 W m�1 on g0 and an air tem-
perature of 25 �C.
The calculated heat transfer coefficient hc is applied

on each element and a local relation is used for the ra-

diant heat flux. Including radiant and convective losses,

the measured heat flux ui at boundary element Ci as-

sociated to the measured temperature hi is given by the

relation:

uiðhiÞ ¼ er T 4r
�

� T 4i
�
þ hcðtÞðh1 � hiÞ ð2Þ

2.2.2. Two sides insulated

Compared to the inverse problem above described,

the set of boundary conditions is different. Two sides are

scanned and the two others are insulated with polysty-

rene slabs of 4 cm thickness. The thermal properties of

the polystyrene (roofmat solid foam) are k ¼
0:029 W m�1 K�1 and a ¼ 4� 10�7 m2 s�1. The scheme

of the heat transfer through the insulation is displayed in

Fig. 5. A local time dependant heat losses coefficient

h0ðtÞ is calculated along the insulated boundary C2 using
a direct 2D simulation. h0ðtÞ is the local ratio of the
interface normal flux by the temperature difference be-

tween interface and outside environment. A 1D ap-

proach can be used for this type of problem but it is an

inefficient model of the heat losses through the insula-

tion because it does not take into account the 2D effects

at the corner (c:c: ¼ 0:15 m) and at the end of the in-
sulation (c:c: ¼ 0:2 m and c:c: ¼ 0:1 m). As a result h0 is
not a global coefficient but a function of the curvilinear

co-ordinate.

3. The point heat source identification procedure

In this part, we present briefly the iterative proce-

dure for point heat sources identification in a domain

for transient heat conduction, which means that both

location and strength can be identified. This procedure

is based on a BEM formulation, which permits to cope

in a convenient way with point heat sources. BEM

permits the strength identification (see [10]) using a se-

quential approach and can also cope with location

identification (see [6]). The location identification pro-

cedure connects a linear strength identification proce-

dure with a non-linear location identification procedure

in an iterative process. The non-linear identification of

the location can be global, using all the time-steps in the

case of static sources or sequential using some future

time-steps and a function specification method for

moving sources.

3.1. The heat source strength identification

In this section we present our approach for the

strength identification of point heat sources whose lo-

cations are known. The presented method uses sequen-

tial BEM and the future time-steps procedure. To solve

the ill-posed problem we use the time regularization

Fig. 5. Scheme of the heat transfer through the insulation.

Fig. 4. Convection heat transfer coefficient hc and mean tem-
perature history on the scanned surface versus time for

g0 ¼ 100 W m�1; h1 ¼ 25 �C.
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procedure [12] over the future time-steps. All the details

concerning the method can be found in [10].

If we consider a domain X of boundary C and if we
discretize C in N elements constant over space and linear
over time [11] at resolution time tf the boundary integral
equations can be assembled in a linear system. If we use

R future time-steps at resolution time tf we obtain the
following system of simultaneous equations:

Hf ;fþr

Tf

..

.

Tfþr

2
664

3
775 ¼ Gf ;fþr

Pf

..

.

Pfþr

2
664

3
775þIf ;fþr

Sf

..

.

Sfþr

2
664

3
775

�

0

T 0
f

" #

..

.

0

T 0
fþr

" #

2
666666664

3
777777775
þ Wf ;fþr: ð3Þ

Here, macro matricesH and G are (ðN þ N 0Þ � ðRþ 1Þ,
N � ðRþ 1Þ) dimensioned and depends on the domain
geometry, on the diffusivity a and on the time

tfþr ð06 r6RÞ. Vector W is ðN þ N 0Þ � ðRþ 1Þ dimen-
sioned and contains all the information relative to the

previous time-steps (t < tf ). Tfþr ðPfþrÞ is the N dimen-

sioned vector of the temperatures (heat flux) at the

boundary at time tfþr ð06 r 
 RÞ. Vectors T 0
fþr are the

vectors of the measured temperatures at the internal

points. Sfþr is the vector of the K heat source strengths

at time tfþr ð0 
 r 
 RÞ. Macro matrix I is

(ðN þ N 0Þ � ðRþ 1Þ;K � ðRþ 1Þ) dimensioned and de-
pends on the location of the heat sources. The locations

are included in matrix I in a non-linear way through

some incomplete gamma functions of the distance from

the source to the considered boundary nodes.

If we assume that the point heat source locations

are known as initially guessed (or updated) locations

[10], system (3) is linear considering heat source

strength identification. As a result matrix If ;fþr can

be computed and linear system (3) can be solved in

the sense of vectors Sfþr ð06 r6RÞ identification. If
we can find some boundary variables (at least one per

element), which can be a prescribed temperature, a

prescribed heat flux or both boundary variables pre-

scribed, the number of unknown boundary variables

can be reduced to M � ðRþ 1Þ. Under all these as-
sumptions it is possible to arrange system (3) into the

linear system:

AU ¼ B; ð4Þ

where A is a matrix of dimension (ðN þ N 0Þ�
ðRþ 1Þ; ðM þ KÞ � ðRþ 1Þ), U is a vector of dimension
ðM þ KÞ � ðRþ 1Þ and B is a vector of dimension

ðN þ N 0Þ � ðRþ 1Þ. In the general case we have more

measurements than unknowns and U has to minimize a

cost function JðUÞ.
If we use a time regularization procedure, the clas-

sical cost function is modified and U has to minimize

function JðUÞ given below:

JðUÞ ¼ kAU � Bk þ gkQUk: ð5Þ

Here Q is the time regularization matrix of dimension

(ðM þ KÞ � ðRþ 1Þ; ðM þ KÞ � ðRþ 1Þ) and g is a co-
efficient adjusting the amplitude of Q.

The regularization procedure, used to reduce excur-

sions into the unknown function, is based on the regu-

larization operator recommended by Tikhonov [12]. In

all the following we will use a second-order regulariza-

tion which preserve the average of the identified func-

tion. If we apply the least squares method to minimize

function (5), this leads to vector ÛU solution of the square
linear system:

ðATAþ gQTQÞÛU ¼ ATB: ð6Þ

A resolution of (6) is performed at each resolution

time tf . In a strength identification procedure we extract
from vector ÛU components the components ÛUf of the

unknowns at time tf ; the other components ðÛUfþ1; . . . ;
ÛUfþrÞ of ÛU being ignored. If the locations are wrong, the
error in fit to measured data is important. This error is

our criterion to find the correct locations of the heat

sources.

3.2. The heat source location identification procedure

Contrary to the strength identification problem, the

location identification problem is non-linear because

macro matrix I contains non-linear functions of the

sources co-ordinates. Nevertheless, it is possible to cal-

culate analytically the first derivatives of these functions

with respect to the co-ordinates. We can then apply a

Newton method to find the location of the sources. As

the co-ordinates can be constant or time dependent ac-

cording as the sources are static or not, we have devel-

oped two different location identification procedures.

The first one concerns the multiple static heat sources

case and the second one the single moving heat source

case.

3.2.1. The case of multiple static sources

In this section we consider the case where the heat

sources are supposed to be static during the experiment.

Considering system (3) let us introduce two vectors, ĤH1;F

and ~HH1;F , respectively, the vector of the boundary vari-

ables contribution and the vector of the heat sources

contribution for all the F time-steps, from time t1 to time
tF . These vectors are the results of the following matrices
operations:
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ĤH1;F ¼ H1;F

T̂T1

..

.

T̂TF

2
666666664

3
777777775
� G1;F

P̂P1

..

.

P̂PF

2
664

3
775þ

0

T 0
1

2
664

3
775

..

.

0

T 0
F

2
664

3
775

2
66666666666664

3
77777777777775

and

~HH1;F ¼ I1;F

ŜS1

..

.

ŜSF

2
6666664

3
7777775
: ð7Þ

As the co-ordinates are assumed constants over all

the time-steps, this procedure is not sequential but glo-

bal and vectors ĤH1;F and ~HH1;F are ðN þ N 0Þ � F dimen-
sioned. For location identification, the aim is to find an

estimation of vector X, which contains the sources co-

ordinates. An estimation of vector X is found solving the

following optimization problem:

X̂X ¼ argfmin kĤH1;F � ~HH1;F kg; ð8Þ

where X is a vector of dimension 2� K in 2D (3� K in
3D) containing the estimated co-ordinates of the K heat

sources. The identification method consists in a first-

order approximation of the difference ðĤH1;F � ~HH1;F Þ with
respect to the co-ordinates in order to evaluate the errors

DX on the initially guessed co-ordinates or updated co-
ordinates. An estimation of the error is found solving:

ðĤH1;F � ~HH1;F Þ ¼ D1;F DX : ð9Þ

Here D1;F is the matrix of the first derivatives of

ðĤH1;F � ~HH1;F Þ with respect to the co-ordinates of the
sources. The latter system of equations is solved in the

sense of the least squares and the co-ordinates are up-

dated such as: X̂Xupdated ¼ X̂Xinitial þ DX̂X . The updated co-
ordinates are used to solve the strength identification

problem. At the end of the iterative process,

kĤH1;F � ~HH1;F k is minimum with the identified locations

and strengths. As the inverse problem is unstable con-

sidering the errors on the co-ordinates Dx and Dy, the
latter are controlled in order to avoid an intermediate

location out of the domain. The direction given by the

successive location procedure is preserved but the max-

imum distance covered between two successive locations

is imposed at 1/5 of X characteristic dimension. This

procedure reduces the excursions of the sources out of

the domain; thus the number of iterations is reduced.

Nevertheless if during the iterative process a location is

found out of the domain, a new location is randomly

imposed in the domain.

3.2.2. The case of a single moving heat source

In this case, as the co-ordinates are function of time,

the method is sequential. Compared to the above-men-

tioned procedure, the iterative process occurs at each

time-step to identify both the strength and the location

of the source. At resolution time tf the expression of ĤH
and ~HH, over R future time steps is:

ĤHf ;fþr ¼ Hf ;fþr

T̂Tf

..

.

T̂Tfþr

2
6664

3
7775� Gf ;fþr

P̂Pf

..

.

P̂Pfþr

2
6664

3
7775� Wf ;fþr and

~HHf ;fþr ¼ If ;fþr

ŜSf

..

.

ŜSfþr

2
6664

3
7775: ð10Þ

Here Wf ;fþr is a vector containing all the information

from the previous time-steps and also the temperatures

measured at the N 0 internal points. The procedure is here

sequential and vectors ĤHf ;fþr and ~HHf ;fþr are ðN þ N 0Þ �
ðRþ 1Þ dimensioned. The aim is to find a vector Xf

containing the source co-ordinates at time tf . An esti-
mation X̂Xf of vector Xf can be found by solving the

optimization problem:

X̂Xf ¼ argfmin kĤHf ;fþr � ~HHf ;fþrkg: ð11Þ

The location identification method consists in a first-

order approximation of the difference ðĤHf ;fþr � ~HHf ;fþrÞ
with respect to the co-ordinates in order to evaluate the

errors on the initially guessed co-ordinates at each future

time-step. The co-ordinates are updated and used to

solve the linear strength identification problem defined

in Section 3.1 at time-step f. In order to reduce the

sensitivity to measurements errors, we use the function

specification method recommended by Beck et al. [13] in

the strength identification procedure. We assume that

the co-ordinates are constants over the R future time-

steps to identify the strength of the moving heat source

for the strength identification procedure. At the end of

the iterative process, kĤHf ;fþr � ~HHf ;fþrk is minimum with
the identified location and strength at time-step tf and
the process can be resumed for time tfþ1.

4. The experimental results

In this paragraph we present some experimental re-

sults obtained using our method. The examples are

chosen to illustrate our approach but they do not con-

stitute an exhaustive test of the identification procedure.

Two different cases are examined relative to the identi-

fication of multiple static heat sources and to a moving

heat source.
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Table 1

Identified co-ordinates for a four sources case involving sources g1–g4

Source Identified x, y Co-ordinates errors d (mm)

x (mm) y (mm) Dx (mm) Dy (mm)

g1 12.6 12.3 0.1 )0.2 0.26

g2 36.7 13.3 )0.8 0.8 1.14

g3 37.0 37.1 )0.5 )0.4 0.70

g4 13.1 36.6 0.6 )0.9 1.06

Fig. 6. Identified strengths ðW m�1Þ versus time (s) using the locations given in Table 1, R ¼ 6: (a) g1 ð}Þ and g3 (�), (b) g2 (�) and g4
(M), (—— real strengths).

Fig. 8. Temperature evolution versus time in the middle of each

face.

Fig. 7. Temperature evolution versus curvilinear co-ordinate at

different time-steps.
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4.1. The multiple static heat sources case

This part is relative to the domain described in Fig. 2.

We present some results concerning two different sets of

boundary conditions. In the first case, the four faces of

the bar are scanned, which gives both temperature and

heat flux on C1 and C2. In the second case, only C1 is
scanned and C2 is imperfectly insulated. In this last ex-
ample as we have less information in the insulated cor-

ner some thermocouples are used as internal

temperatures.The experiments last 3600 s and the time-

step used for the identification is Dt ¼ 36 s. Six future
time-steps are used for the strength identification.

4.1.1. All the sides are scanned

The first example concerns the identification of four

sources (g1–g4) located in the four corners of the square
bar. The sources are activated with different strength

variations: g2ðtÞ and g4ðtÞ are sinusoidal and their phases
are opposed, g1ðtÞ is constant and g3ðtÞ is triangular. The
identified co-ordinates are displayed in Table 1. Distance

d, given in mm, is the distance between the identified and

the experimental source (d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
). As we can

see in Table 1, the location identification is accurate with

a maximum distance between the identified and experi-

mental source of 1.1 mm.

The results concerning the strength identification are

displayed in Fig. 6. They are very satisfactory with an

error lower than 5% on the identified strength.

In the above-mentioned identification, only bound-

ary measurements are used. The temperature field is

presented versus curvilinear co-ordinates at four differ-

ent time-steps in Fig. 7. In Fig. 8 we present the evolu-

tion of the temperature versus time at the boundary for

four points located in the middle of each face. These

measurements are obtained using 100 infrared pictures.

The second example concerns an other identification

of four sources, but the configuration is different.

Compared to the previous case source g4 is replaced by
source g0 located in the centre of the domain. The
strength variations of g1–g3 are the same as in the first
example and g0 has the same strength variation as g4 (see
Fig. 9).

This case is more difficult than the previous one be-

cause the four sources are closer to each other. Let us

consider the singular value decomposition of the

Fig. 9. Identified strengths ðW m�1Þ versus time (s) using the locations given in Table 2, R ¼ 6: (a) g1 (}) and g3 (�); (b) g2 (�) and g0
(+), (—— real strengths).

Table 2

Identified co-ordinates for a four sources case involving sources g0–g3

Source Identified x; y Co-ordinates errors d (mm)

x (mm) y (mm) Dx (mm) Dy (mm)

g1 14.0 11.9 1.5 )0.6 1.62

g2 36.3 13.2 )1.2 0.7 1.41

g3 36.5 36.4 )1.0 )1.1 1.46

g0 23.1 26.2 )1.9 1.2 2.23
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strength identification matrix A (see Eq. (4)) and the

associated condition number [14], defined as the ratio of

the largest singular value to the smallest one. For a well-

conditioned matrix this number will be close to one.

Conversely, a matrix is ill-conditioned if its condition

number is too large. The first configuration (g1–g4) leads
to a condition number of about 4� 105 without regu-
larization. In the second example (g0–g3), the value
grows up to 1:5� 1013. It shows that the matrix is worse
ill-conditioned in the second case, which means that the

measurement errors will be amplified. In the corners of

the square bar, the temperature measurements are less

accurate, which is a consequence of an imperfect focus

of the infrared scanner. This inaccurate information

introduced in the second member leads to important

errors in the strength identification.

Table 2 presents the location identification results.

The results are less accurate as in the previous case. The

error on the location of g1–g3 is about 1.5 mm. For g0,
the distance between the experimental source and the

identified source grows up to 2.2 mm, which is due to the

sensitivity coefficients to the co-ordinates, which are

lower for g0 than for the sources located in the corners of
the square section.

In Fig. 9, we present the identified strengths with the

locations given in Table 2. The results are satisfactory

but less accurate than in the first case. The errors on the

sources strengths compensate each other. For example,

if we consider sources g0 and g1 at time t ¼ 1300 s, we
see that the strength of g1 is lower than expected when
the one of g0 is higher than expected.
The third and last example involves five sources

(g0–g4). The strength variations of g1–g4 are the same as
in the first example and g0ðtÞ is constant. In this case the
problem is more difficult with a condition number of

1:5� 1014. The results of the location identification are
given in Table 3. As in the previous case the error on the

identified location of g0 is more important than for the
other one. As the sources are very close, the errors on

the locations identifications leads to errors on the

strengths much more important than in the first exam-

ples for all the sources.

The identified strengths displayed in Fig. 10 show

that the results are less satisfactory with a maximum

Table 3

Identified co-ordinates for a five sources case involving sources g0–g4

Source Identified x; y Co-ordinates errors d (mm)

x (mm) y (mm) Dx (mm) Dy (mm)

g0 21.4 24.7 )3.6 )0.3 3.57

g1 12.7 10.4 0.2 )2.1 2.12

g2 36.0 13.0 )1.5 0.5 1.60

g3 36.3 36.3 )1.2 )1.2 1.70

g4 12.6 37.8 0.1 0.3 0.31

Fig. 10. Identified strengths ðW m�1Þ versus time (s) using the locations given in Table 3, R ¼ 6: (a) g1 (}), g3 (�) and g0 (+); (b) g2 (�)
and g4 (M), (—— real strengths).
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error of 30% for the strength identification of g1. As in
the previous case, the errors on the sources strengths

compensate each other for global energy conservation.

These results are due to the error on the location iden-

tification and to the ill-posed character of the strength

identification procedure.

4.1.2. Two sides insulated

In this part, we present a result obtained when we

have less information on a part of the boundary. Here

temperature and heat flux are given on C1, when C2 is
insulated. The boundary condition on C2 is known to be
Fourier boundary condition but no extra information is

given. As C2 is imperfectly insulated we calculate the
heat losses coefficient using a direct 2D computation.

This coefficient could be estimated using a boundary

condition estimation procedure, but in this case it means

that we can control the heat source which is not our aim.

Three thermocouples, tc3–tc5 (see Fig. 2), are used.
They are located in the insulated part of the domain

where there is a lack of information. The presented re-

sult involves the sources located in the corners of the

square section (g1–g4). The sources are activated with
different strength variations: g1ðtÞ and g3ðtÞ are sinusoi-
dal and their phases are opposed, g2ðtÞ is constant and
g4ðtÞ is triangular. The identified locations are displayed
in Table 4, and the corresponding strengths are pre-

sented in Fig. 11. The results are very satisfactory for g2,
which is in the scanned corner with an error on the lo-

cation identification of 0.3 mm. For the other sources

the results are although good with a maximum error

d ¼ 2:1 mm on the source g3 identification.

4.1.3. Influence of the initial location

Through an example we propose to examine the in-

fluence of the initial location on the results of the iden-

tification procedure. Let us examine the above-

mentioned case with sources g1–g4 activated. The pre-
vious identification has been performed using the initial

locations at the centre of the bar, at four different lo-

cations located at 0.1 mm of the centre. The results after

5 iterations are given in Table 1. In order to test the

stability of the results to initial locations the path cov-

ered by the identified locations during the iterative

Table 4

Identified co-ordinates for a four sources case involving sources g1–g4, C2 is insulated

Source Identified x; y Co-ordinates errors d (mm)

x (mm) y (mm) Dx (mm) Dy (mm)

g1 13.4 13.1 0.9 0.6 1.06

g2 37.2 12.6 )0.3 0.1 0.27

g3 36.0 36.1 )1.5 )1.4 2.09

g4 13.4 35.9 0.9 )1.6 1.82

Fig. 11. Identified strengths ðW m�1Þ versus time (s) using the locations given in Table 4, R ¼ 6: (a) g2 (�) and g4 (M); (b) g1 (}) and g3
(�), (—— real strengths).
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process is recorded. The results are displayed in Fig. 12

for three different initial locations (in the corners, at the

centre . . .). The stopping criterion is here of 0.15 mm,
which corresponds to a radius of the heating wires. All

the obtained final locations are the same within 0.1 mm.

The number of iteration is low and varies from 5 for case

(a) to 7 for case (c). The value of the residual

kĤH1;F � ~HH1;F k is given in figure (d) versus the iteration
number. This number declines with the number of iter-

ation, which validates the iterative method in this par-

ticular case.

In our previous works, see [4] for steady state heat

conduction using some experimental measurements and

see [6] for transient heat conduction using simulated

measurement, we have presented some results when the

number of sources is unknown. As shown in [4] the case

of a declared number of sources (K) inferior to the real

number can by eliminated quite easily. In this case the

residual is superior to the expected residual using the

measurement errors which shows that we have an in-

correct number K. For the example presented in Fig. 12,

if the declared number of sources (K) is superior to the

real number, the number of iterations increases dramat-

ically but the process still converge with five and six

sources whatever the initial location. The extra sources

are then located in the corners of the domain with a low

strength. This particular location is found in order to

compensate the measurement errors due to an imperfect

focus of the scanner at the corners. As a result the re-

sidual kĤH1;F � ~HH1;F k decreases as the number of extra
sources increases. When the number of unknowns is

equal to the numbers of data the residual are null because

all the extra sources (sinks) are acting as little generators

offsetting exactly the measurements errors.

Fig. 12. Path followed by the searched heat sources (g1 (�), g2 (�), g3 (}) and g4 (M)) during the iterative process for different initial
locations (� real location). (a) g1 (1;1) g2 (49;1) g3 (49;49) g4 (1;49), (b) g1 (24.9;24.9) g2 (24.9;25.1) g3 (25.1;25.1) g4 (25.1;24.9), (c) g1
(20;1) g2 (49;20) g3 (30;49) g4 (1;30), (d) Residuals versus the iteration number for cases (a)–(c).
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4.2. The moving heat source case

This part is relative to the domain described in Fig. 3.

The moving point heat source is simulated by 16 heating

wires activated successively. In the presented examples,

all the boundaries are scanned and no thermocouple

used.The experiment lasted 3600 s and we use four fu-

ture time-steps to identify both the path and the strength

of the point heat source. In the first example, the moving

heat source describes one circle in 48 min, which repre-

sents an average speed of 118 mm/h. Each heating wire

is activated with a constant strength. The identified path

is given in Fig. 13. As we can see, the identified locations

at each time-step are slightly dispersed around the real

locations. The average distance between the real location

and the identified location is d ¼ 2:5 mm. As we use a
function specification method for the co-ordinates, the

method fails to reconstruct the stepwise location varia-

tions.

In Fig. 14, we present the identified strengths at each

time step. Compared to the multiple heat sources iden-

tification case, the identified strength is not smooth. Let

us introduce the standard deviation r between the real
strengths Sf and the identified strengths ŜSf ð16 f 6 F Þ.
The standard deviation r is equal to 18:6 W m�1,

which is very important. This is due to the error on the

location identification. Nevertheless, the average of the

difference between the real strength and the identified

strength on all the time steps is lower than 1:5 W m�1,

which shows that the global energy is well recovered.

In the second example, the moving heat source

describes one circle in 28.8 min, which represents an

average speed of 196 mm/h. The strength variation is

the same as in the previous example. In this case, the

identified locations are more dispersed around the real

locations (see Fig. 15(a)), the average distance between

the real locations and the identified locations is about

d ¼ 3 mm. As a result, the standard deviation between
the real strength and the identified strength grew up

and is equal to r ¼ 24:2 W m�1 (see Fig. 15(b)). In

this last part only constant variations of the strength

are presented but of course we can have any shape of

variation because no a priori information is given on

the strength history.

Fig. 13. (a) Identified locations (�) of a moving source at each time step, R ¼ 4, (� real location). (b) Identified co-ordinates x (�) and
y (�), (—— real values).

Fig. 14. Strength identification using the identified locations at

each time-step, R ¼ 4.
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5. Conclusion

In order to test our previous numerical works about

heat source identifications, we set up a 2D experiment,

which allowed us to solve an experimental transient 2D

inverse problem. Our method has given some satisfac-

tory results in point heat source identification for 4 and

even five heat sources. When the location is assumed to

be known, the reconstruction of time variations of line

heat source strengths is performed using a BEM inverse

formulation connecting a future time-steps and a regu-

larization method. Through this experiment, we show

the good potentialities of our methodology, connecting

BEM and infrared thermography. With our particular

experiment we have shown that it is possible to find at

least four heat sources with good results and without

any internal measurement. The application to 3D heat

conduction is more complex due to the difficulty to

produce a point source with a sufficient strength to be

detected.
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